

Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 1 / 14

Replaced revision:6 (Dated 16/06/2016)

Safety Data Sheet

According to Annex II to REACH - Regulation 2015/830

SECTION 1. Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Polyurethane Sealant - 472576 (Black), 472583 (Grey), 472590 (White) Product name

1.2. Relevant identified uses of the substance or mixture and uses advised against

Intended use One-component elastic sealant suitable for various types of use.

Identified Uses	Industrial	Professional	Consumer
SEALANTS AND ADHESIVES FORMULATIONS			
IN INDUSTRY	SU: 10.		
	ERC: 2.		
	PROC: 3, 4, 5, 8a, 8b, 9.		
	PC: 1.		
INDUSTRIAL APPLICATIONS OF SEALANTS		-	-
AND ADHESIVES	SU: 17, 19.	SU: 17, 19.	
AND ADITESIVES	ERC: 5, 8b.	ERC: 5, 8b.	
	PROC: 10, 8a, 8b.	PROC: 10, 8a, 8b.	
	PC: 1.	PC: 1.	
	PG. 1.	FG. 1.	
			-
CHEMICAL SUBSTANCE USE IN			
LABORATORY, INDUSTRIAL	PROC: 15.		
	PC: 1, 21.		

1.3. Details of the supplier of the safety data sheet

Name Indasa Abrasives (UK) Ltd Full address Viking Works, Greenstead Road, **District and Country** Colchester, Essex, CO1 2ST 01206 870366 Tel Fax 01206 860525 e-mail address of the competent person

responsible for the Safety Data Sheet

office@indasa.co.uk

1.4. Emergency telephone number

For urgent enquiries 01206 870 366

08:45 - 17:00 Monday-Thursday

08:45 - 16:00 Friday

SECTION 2. Hazards identification

2.1. Classification of the substance or mixture

The product is classified as hazardous pursuant to the provisions set forth in (EC) Regulation 1272/2008 (CLP) (and subsequent amendments and supplements). The product thus requires a safety datasheet that complies with the provisions of (EU) Regulation 2015/830. Any additional information concerning the risks for health and/or the environment are given in sections 11 and 12 of this sheet.

Hazard classification and indication:

Respiratory sensitization, category 1

H334

May cause allergy or asthma symptoms or breathing

difficulties if inhaled.

Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 2 / 14

Replaced revision:6 (Dated 16/06/2016)

SECTION 2. Hazards identification .../>

2.2. Label elements

Hazard labelling pursuant to EC Regulation 1272/2008 (CLP) and subsequent amendments and supplements.

Hazard pictograms:

Signal words: Danger

Hazard statements:

H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.

EUH204 Contains isocyanates. May produce an allergic reaction.

Precautionary statements:

P342+P311 If experiencing respiratory symptoms: call a POISON CENTER / doctor / . . . P304+P340 IF INHALED: remove person to fresh air and keep comfortable for breathing. P284 [In case of inadequate ventilation] wear respiratory protection.

Contains: DIFENILMETANODIISOCIANATO, ISOMERI E OMOLOGHI

TRIS(NONYLPHENYL)PHOSPHITE

2.3. Other hazards

On the basis of available data, the product does not contain any PBT or vPvB in percentage greater than 0,1%.

SECTION 3. Composition/information on ingredients

3.2. Mixtures

Contains:

Identification x = Conc. % Classification 1272/2008 (CLP)

REACTIVE MIXTURE OF ETHYLBENZENE, m-XYLENE AND p-XYLENE

CAS 0 ≤ x < 5,7 Flam. Liq. 2 H225, Acute Tox. 4 H312, Acute Tox. 4 H332, Asp. Tox. 1 H304,

STOT RE 2 H373, Eye Irrit. 2 H319, Skin Irrit. 2 H315, STOT SE 3 H335

EC 905-562-9

INDEX

Reg. no. 01-2119555267-33 XYLENE (BENZENE <0.01%)

CAS 1330-20-7 0 ≤ x < 5,7 Flam. Liq. 3 H226, Acute Tox. 4 H312, Acute Tox. 4 H332, Asp. Tox. 1 H304,

STOT RE 2 H373, Eye Irrit. 2 H319, Skin Irrit. 2 H315, STOT SE 3 H335, Classification note according to Annex VI to the CLP Regulation: C

EC 215-535-7 INDEX 601-022-00-9

Reg. no. 01-2119488216-32-XXXX

ETHYL ACETATE

CAS 141-78-6 1 ≤ x < 1,5 Flam. Liq. 2 H225, Eye Irrit. 2 H319, STOT SE 3 H336, EUH066

EC 205-500-4 INDEX 607-022-00-5 Reg. no. 01-2119475103-46

DIFENILMETANODIISOCIANATO, ISOMERI E OMOLOGHI

CAS 9016-87-9 0,89 ≤ x < 1 Carc. 2 H351, Acute Tox. 4 H332, STOT RE 2 H373, Eye Irrit. 2 H319, Skin Irrit. 2 H315,

STOT SE 3 H335, Resp. Sens. 1 H334, Skin Sens. 1 H317

EC INDEX

BIS(2,2,6,6-TETRAMETHYL-4-PIPERIDYL)SEBACATE

CAS 52829-07-9 0,3 ≤ x < 0,35 Eye Dam. 1 H318, Aquatic Acute 1 H400 M=1, Aquatic Chronic 2 H411

EC 258-207-9

INDEX

Reg. no. 01-2119537297-32-XXXX

Indasa Abrasives (UK) Ltd Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 3 / 14

Replaced revision:6 (Dated 16/06/2016)

SECTION 3. Composition/information on ingredients .../>>

DIFENILMETAN-4,4'-DIISOCIANATO

CAS 101-68-8 0,25 ≤ x < 0,3 Carc. 2 H351, Acute Tox. 4 H332, STOT RE 2 H373, Eye Irrit. 2 H319, Skin Irrit. 2 H315,

STOT SE 3 H335, Resp. Sens. 1 H334, Skin Sens. 1 H317,

Classification note according to Annex VI to the CLP Regulation: 2 C

Skin Sens. 1 H317, Aguatic Acute 1 H400 M=1, Aguatic Chronic 1 H410 M=1

EC 202-966-0 INDEX 615-005-00-9

Reg. no. 01-2119457014-47-XXXX TRIS(NONYLPHENYL)PHOSPHITE

CAS 26523-78-4 $0.2 \le x < 0.25$

EC 247-759-6

INDEX

Reg. no. 01-2119520601-54-XXXX

The full wording of hazard (H) phrases is given in section 16 of the sheet.

The two substances with no. REACH: 01-2119555267-33 and Nr. REACH: 01-2119488216-32 constitute a mixture in variable proportions and then the maximum percentage to be considered in the finished product is equal to the maximum considered for only one of them. They having the same classification, each combination does not involve changes in the final classification of the mixture.

SECTION 4. First aid measures

4.1. Description of first aid measures

EYES: Remove contact lenses, if present. Wash immediately with plenty of water for at least 15 minutes, opening the eyelids fully. If problem persists, seek medical advice.

SKIN: Remove contaminated clothing. Rinse skin with a shower immediately. Get medical advice/attention immediately. Wash contaminated clothing before using it again.

INHALATION: Remove to open air. If the subject stops breathing, administer artificial respiration. Get medical advice/attention immediately. INGESTION: Get medical advice/attention immediately. Do not induce vomiting. Do not administer anything not explicitly authorised by a doctor

4.2. Most important symptoms and effects, both acute and delayed

Specific information on symptoms and effects caused by the product are unknown.

4.3. Indication of any immediate medical attention and special treatment needed

Information not available

SECTION 5. Firefighting measures

5.1. Extinguishing media

SUITABLE EXTINGUISHING EQUIPMENT

Extinguishing substances are: carbon dioxide, foam, chemical powder. For product loss or leakage that has not caught fire, water spray can be used to disperse flammable vapours and protect those trying to stem the leak.

UNSUITABLE EXTINGUISHING EQUIPMENT

Do not use jets of water. Water is not effective for putting out fires but can be used to cool containers exposed to flames to prevent explosions.

5.2. Special hazards arising from the substance or mixture

HAZARDS CAUSED BY EXPOSURE IN THE EVENT OF FIRE

Excess pressure may form in containers exposed to fire at a risk of explosion. Do not breathe combustion products.

5.3. Advice for firefighters

GENERAL INFORMATION

Use jets of water to cool the containers to prevent product decomposition and the development of substances potentially hazardous for health. Always wear full fire prevention gear. Collect extinguishing water to prevent it from draining into the sewer system. Dispose of contaminated water used for extinction and the remains of the fire according to applicable regulations.

SPECIAL PROTECTIVE EQUIPMENT FOR FIRE-FIGHTERS

Normal fire fighting clothing i.e. fire kit (BS EN 469), gloves (BS EN 659) and boots (HO specification A29 and A30) in combination with self-contained open circuit positive pressure compressed air breathing apparatus (BS EN 137).

Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 4 / 14

Replaced revision:6 (Dated 16/06/2016)

SECTION 6. Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Block the leakage if there is no hazard.

Wear suitable protective equipment (including personal protective equipment referred to under Section 8 of the safety data sheet) to prevent any contamination of skin, eyes and personal clothing. These indications apply for both processing staff and those involved in emergency procedures.

6.2. Environmental precautions

The product must not penetrate into the sewer system or come into contact with surface water or ground water.

6.3. Methods and material for containment and cleaning up

Collect the leaked product into a suitable container. Evaluate the compatibility of the container to be used, by checking section 10. Absorb the remainder with inert absorbent material.

Make sure the leakage site is well aired. Contaminated material should be disposed of in compliance with the provisions set forth in point 13.

6.4. Reference to other sections

Any information on personal protection and disposal is given in sections 8 and 13.

SECTION 7. Handling and storage

7.1. Precautions for safe handling

Keep away from heat, sparks and naked flames; do not smoke or use matches or lighters. Vapours may catch fire and an explosion may occur; vapour accumulation is therefore to be avoided by leaving windows and doors open and ensuring good cross ventilation. Without adequate ventilation, vapours may accumulate at ground level and, if ignited, catch fire even at a distance, with the danger of backfire. Avoid bunching of electrostatic charges. When performing transfer operations involving large containers, connect to an earthing system and wear antistatic footwear. Vigorous stirring and flow through the tubes and equipment may cause the formation and accumulation of electrostatic charges. In order to avoid the risk of fires and explosions, never use compressed air when handling. Open containers with caution as they may be pressurised. Do not eat, drink or smoke during use. Avoid leakage of the product into the environment.

7.2. Conditions for safe storage, including any incompatibilities

Store only in the original container. Store the containers sealed, in a well ventilated place, away from direct sunlight. Store in a well ventilated place, keep far away from sources of heat, naked flames and sparks and other sources of ignition. Keep containers away from any incompatible materials, see section 10 for details.

Storage class TRGS 510 (Germany): 10

7.3. Specific end use(s)

Information not available

SECTION 8. Exposure controls/personal protection

8.1. Control parameters

Regulatory References:

DEU	Deutschland	TRGS 900 (Fassung 31.1.2018 ber.) - Liste der Arbeitsplatzgrenzwerte und Kurzzeitwerte
ESP	España	INSHT - Límites de exposición profesional para agentes químicos en España 2017
FRA	France	JORF n°0109 du 10 mai 2012 page 8773 texte n° 102
GBR	United Kingdom	EH40/2005 Workplace exposure limits
GRC	Ελλάδα	ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ -ΤΕΥΧΟΣ ΠΡΩΤΟ Αρ. Φύλλου 19 - 9 Φεβρουαρίου 2012
HRV	Hrvatska	NN13/09 - Ministarstvo gospodarstva, rada i poduzetništva
ITA	Italia	Decreto Legislativo 9 Aprile 2008, n.81
NLD	Nederland	Databank of the social and Economic Concil of Netherlands (SER) Values, AF 2011:18
POL	Polska	ROZPORZĄDZENIE MINISTRA PRACY I POLITYKI SPOŁECZNEJ z dnia 7 czerwca 2017 r
SWE	Sverige	Occupational Exposure Limit Values, AF 2011:18
EU	OEL EU	Directive (EU) 2017/2398; Directive (EU) 2017/164; Directive 2009/161/EU; Directive 2006/15/EC;
		Directive 2004/37/EC; Directive 2000/39/EC; Directive 91/322/EEC.
	TLV-ACGIH	ACGIH 2018

Indasa Abrasives (UK) Ltd Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 5 / 14 Replaced revision:6 (Dated 16/06/2016)

SECTION 8. Exposure controls/personal protection .../>>

DIISONONYL	. PHTHALATE

 Threshold Limit Value

 Type
 Country
 TWA/8h
 STEL/15min

 mg/m3
 ppm
 mg/m3
 ppm

 WEL
 GBR
 5

				XYLENE (BE	NZENE <0.0	1%)			
Threshold Limi	t Value								
Type	Counti	y TWA/8h		STEL/15	min				
		mg/m3	ppm	mg/m3	ppm				
AGW	DEU	440	100	880	200	SKIN			
MAK	DEU	440	100	880	200	SKIN			
VLA	ESP	221	50	442	100	SKIN			
VLEP	FRA	221	50	442	100	SKIN			
WEL	GBR	220	50	441	100				
TLV	GRC	435	100	650	150				
GVI	HRV	221	50	442	100	SKIN			
VLEP	ITA	221	50	442	100	SKIN			
OEL	NLD	210		442		SKIN			
NDS	POL	100							
MAK	SWE	221	50	442	100	SKIN			
OEL	EU	221	50	442	100	SKIN			
TLV-ACGIH		434	100	651	150				
Predicted no-ef	fect conce	ntration - PNE	С						
Normal value	in fresh wa	ater					0,327	mg/l	
Normal value	in marine	water					0,327	mg/l	
Normal value	for fresh w	ater sediment					12,46	mg/kg	
Normal value	for marine	water sedimen	t				12,46	mg/kg	
Normal value	for water,	intermittent rele	ase				0,327	mg/l	
Normal value	of STP mi	croorganisms					6,58	mg/l	
Normal value	for the ten	estrial comparti	ment				2,31	mg/kg	
Health - Derive	d no-effect	level - DNEL /	DMEL						
		Effects on consi	umers			Effects on worl	ers		
Route of exp	osure	Acute Ac	ute	Chronic	Chronic	Acute local	Acute	Chronic	Chronic
		local sys	stemic	local	systemic		systemic	local	systemic
Oral				VND	1,6				
					mg/kg/d				
Inhalation				VND	14,8	289	VND	VND	77
					mg/m3	mg/kg			mg/m3
Skin				VND	108			VND	180
					mg/kg/d				mg/kg/d

	F	REACTIVE	MIXTURE	OF ETHYLBI	ENZENE, m-X	YLENE AND p-XY	LENE		
Threshold Limit Value	•								
Type C	ountry T	WA/8h		STEL/15	min				
	n	ng/m3	ppm	mg/m3	ppm				
TLV-ACGIH	2	221	50	442	100				
redicted no-effect co	oncentratio	n - PNEC							
Normal value in fres	sh water						0,327	mg/l	
Normal value in ma	rine water						0,327	mg/l	
Normal value for fre	sh water se	diment					12,46	mg/kg	
Normal value for ma	arine water s	sediment					12,46	mg/kg	
Normal value for wa	iter, intermit	tent releas	se				0,327	mg/l	
Normal value of ST	P microorga	ınisms					6,58	mg/l	
Normal value for the	e terrestrial	compartm	ent				2,31	mg/kg	
lealth - Derived no-e	ffect level -	DNEL / D	MEL						
	Effects	on consun	ners		Effects on workers				
Route of exposure	Acute	Acut	е	Chronic	Chronic	Acute local	Acute	Chronic	Chronic
	local	syste	emic	local	systemic		systemic	local	systemic
Oral				VND	1,6				
					mg/kg				
Inhalation	VND	174		VND	14,8	VND	289	VND	77
		mg/n	n3		mg/m3		mg/m3		mg/m3
Skin				VND	108			VND	180
					mg/kg				mg/kg

Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 6 / 14 Replaced revision:6 (Dated 16/06/2016)

SECTION 8. Exposure controls/personal protection .../>>

TION O. Exposu	ie conti	Jis/person	ai protectio	11/ **					
				ETHYL	ACETATE				
Threshold Limit Val	ue								
Туре	Country	TWA/8h		STEL/15	min				
		mg/m3	ppm	mg/m3	ppm				
AGW	DEU	1500	400	3000	800				
MAK	DEU	1500	400	3000	800				
VLA I	ESP	1460	400						
VLEP	FRA	1400	400						
WEL	GBR		200		400				
TLV	GRC	1400	400						
GVI	HRV		200		400				
OEL I	NLD	550		1100					
NDS I	POL	734		1468					
MAK	SWE	500	150	1100	300				
OEL I	EU	734	200	1468	400				
TLV-ACGIH		1441	400						
Predicted no-effect	concentra	tion - PNE	C						
Normal value in fr	esh water						0,26	mg/l	
Normal value in m	arine wate	er					0,026	mg/l	
Normal value for f	resh water	sediment					1,25	mg/kg	
Normal value for r	narine wat	er sediment					0,125	mg/kg	
Normal value for v	vater, inter	mittent relea	ase				1,65	mg/l	
Normal value of S	TP microo	rganisms					650	mg/l	
Normal value for t	he terrestr	ial compartr	nent				0,24	mg/kg	
lealth - Derived no-	effect leve	el - DNEL /	DMEL						
	Effe	cts on consu	ımers			Effects on worl	cers		
Route of exposure	e Acut	te Acı	ute	Chronic	Chronic	Acute local	Acute	Chronic	Chronic
	loca	l sys	temic	local	systemic		systemic	local	systemic
Oral				VND	4,5				
					mg/kg				
Inhalation	734		=	367	367	1468	1468	734	734
	mg/r	m3 mg	/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3
Skin				VND	37			VND	63
					mg/kg				mg/kg

	DIFENILMETANODIISOCIANATO, ISOMERI E OMOLOGHI											
Threshold Limit Value												
Type	Country	TWA/8h		STEL/15	min							
		mg/m3	ppm	mg/m3	ppm							
TLV-ACGIH			0,005									

	BUMETRIZOLE										
Threshold Limit	Value										
Type	Country	TWA/8h		STEL/15	min						
		mg/m3	ppm	mg/m3	ppm						
TLV-ACGIH		10									

		BIS(2,2,6	,6-TETRAMETH	IYL-4-PIPERIC	YL)SEBACATE					
redicted no-effect cor	ncentration	- PNEC								
Normal value in fresh	water					0,005	mg/l			
Normal value in marii	ne water					0,0005	mg/l			
Normal value for fres	h water sed	iment				8,02	mg/kg			
Normal value for mar	ine water se	ediment				0,802	mg/kg			
Normal value of STP	microorgan	isms				1	mg/l			
Normal value for the	terrestrial co	ompartment				1,6	mg/kg			
lealth - Derived no-eff	ect level - D	NEL / DMEL								
	Effects o	n consumers			Effects on wor	kers	ters			
Route of exposure	Acute	Acute	Chronic	Chronic	Acute local	Acute	Chronic	Chronic		
	local	systemic	local	systemic		systemic	local	systemic		
Oral	VND	1	VND	1						
		mg/kg		mg/kg						
Inhalation	VND	1,4	VND	1,4	VND	5,6	VND	5,6		
		mg/m3		mg/m3		mg/m3		mg/m3		
Skin	VND	1	VND	1	VND	2	VND	2		
		mg/kg		mg/kg		mg/kg		mg/kg		

Indasa Abrasives (UK) Ltd **Polyurethane Sealant**

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 7 / 14

Replaced revision:6 (Dated 16/06/2016)

SECTION 8.	Exposure	controls/	personal	protection	/ >>
-------------------	-----------------	-----------	----------	------------	------

				DIFENILMETAN-	4.4'-DIISOCI	ANATO			
Threshold Limit \	/alue		_		.,				
Туре	Country	TWA	/8h	STEL/15r	nin				
, , , , , , , , , , , , , , , , , , ,		mg/m	n3 ppm	mg/m3	ppm				
AGW	DEU	0,05	•••	0,05	••				
MAK	DEU	0,05		0,05		INHAL			
MAK	DEU	0,05		0,05		SKIN			
VLA	ESP	0,052	2 0,005						
VLEP	FRA	0,1	0,01	0,2	0,02				
TLV	GRC	0,2		0,2					
NDS	POL	0,05		0,2					
MAK	SWE	0,03	0,002	0,05 (C)	0,005 (C)				
TLV-ACGIH		0,051	1 0,005						
Predicted no-effe	ct concent	ration - F	PNEC						
Normal value ir	n fresh wate	r					1,01	mg/l	
Normal value ir	n marine wa	ter					0,11	mg/l	
Normal value o	f STP micro	organisn	ns				1,01	mg/l	
Normal value for	or the terres	trial com	partment				1,01	mg/kg	
lealth - Derived i	no-effect le	vel - DNI	EL / DMEL						
	Eff	ects on c	onsumers			Effects on wor	kers		
Route of expos	ure Ac	ute	Acute	Chronic	Chronic	Acute local	Acute	Chronic	Chronic
	loc	al	systemic	local	systemic		systemic	local	systemic
Oral	VN	ID	20						
			mg/kg bw/d						
Inhalation	0,0)5	0,05	0,025	0,025	0,1	0,1	0,05	0,05
		J/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3
Skin	17	•	25			28,7	50		
	mg	J/cm2	mg/kg bw/d			mg/cm2	mg/kg/d		

	2,	,2 - DIMORPHO	LINODIETHYL	. ETHER				
entration -	PNEC							
<i>v</i> ater					0,1	mg/l		
water					0,01	mg/l		
water sedin	nent				8,2	mg/kg		
e water sec	diment				0,82	mg/kg		
intermitter	nt release				1	mg/l		
nicroorganis	sms				100	mg/l		
rrestrial cor	mpartment				1,58	mg/kg		
t level - Di	NEL / DMEL							
Effects on	consumers			Effects on worl	ers			
Acute	Acute	Chronic	Chronic	Acute local	Acute	Chronic	Chronic	
local	systemic	local	systemic		systemic	local	systemic	
		VND	0,5					
			mg/kg/d					
		VND	1,8			VND	7,28	
			mg/m3				mg/m3	
		VND	0,5			VND	1	
			mg/kg/d				mg/kg/d	
	water water sedir water sedir water sedir water secintermitter icroorganis restrial cor t level - DI Effects on Acute	entration - PNEC vater water water sediment e water sediment intermittent release icroorganisms rrestrial compartment t level - DNEL / DMEL Effects on consumers Acute	entration - PNEC vater water water sediment e water sediment intermittent release dicroorganisms restrial compartment t level - DNEL / DMEL Effects on consumers Acute Acute Chronic local systemic local VND	### Comparison - PNEC ### PNEC ### Water ### Water sediment ##	water water sediment e water sediment intermittent release icroorganisms restrial compartment t level - DNEL / DMEL Effects on consumers Acute Acute Chronic Chronic Acute local local systemic local systemic VND 0,5 mg/kg/d VND 1,8 mg/m3 VND 0,5	entration - PNEC vater 0,1 water sediment 8,2 e water sediment 0,82 intermittent release 1 incroorganisms 100 restrial compartment 1,58 t level - DNEL / DMEL Effects on consumers Acute Acute Chronic Chronic Acute local Acute local Acute systemic Iocal systemic systemic systemic VND 0,5 mg/kg/d VND 1,8 mg/m3 VND 0,5 mg/m3	Action - PNEC	

(C) = CEILING; INHAL = Inhalable Fraction; RESP = Respirable Fraction; THORA = Thoracic Fraction.

VND = hazard identified but no DNEL/PNEC available ; NEA = no exposure expected ; NPI = no hazard identified.

8.2. Exposure controls

As the use of adequate technical equipment must always take priority over personal protective equipment, make sure that the workplace is well aired through effective local aspiration.

When choosing personal protective equipment, ask your chemical substance supplier for advice.

Personal protective equipment must be CE marked, showing that it complies with applicable standards.

HAND PROTECTION

Protect your hands with work gloves, category III (ref. standard EN 374). For the final choice of material you need to assess the type of use. In case of contact for the short term or as protection against splashes, use gloves made of nitrile (0.3mm thickness, permeation time >480 min.). In the event of continued exposure use butyl rubber gloves (0.4mm thickness, permeation time> 480 min.). Contaminated gloves should be removed.

SKIN PROTECTION

Wear category I professional long-sleeved overalls and safety footwear (see Directive 89/686/EEC and standard EN ISO 20344). Wash body with soap and water after removing protective clothing.

EYE PROTECTION

Wear airtight protective goggles (see standard EN 166).

Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 8 / 14

Replaced revision:6 (Dated 16/06/2016)

SECTION 8. Exposure controls/personal protection .../>>

RESPIRATORY PROTECTION

In case of exceeding the threshold value (eg, TLV-TWA) of the substance or one or more of the substances present in the product, it is advisable to wear a mask with filter type A for organic vapors, the class (1, 2 or 3) must be chosen according to the limit concentration of use (1000, 5000 or 10000 ppm) (ref. standard EN 14387).

ENVIRONMENTAL EXPOSURE CONTROLS

The emissions generated by manufacturing processes, including those generated by ventilation equipment, should be checked to ensure compliance with environmental standards.

SECTION 9. Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance paste Colour various Odour typical Odour threshold Not available Not available Melting point / freezing point Not available Initial boiling point Not available Boiling range Not available Flash point Not applicable Evaporation rate Not available Flammability (solid, gas) not flammable Lower inflammability limit Not available Not available Upper inflammability limit Lower explosive limit Not available Upper explosive limit Not available Not available Vapour pressure Vapour density Not available Relative density 1.33

Solubility insoluble in water
Partition coefficient: n-octanol/water Not available
Auto-ignition temperature Not available
Decomposition temperature Not available
Viscosity 60000 - 135000 cps
Explosive properties Not available
Oxidising properties Not available

9.2. Other information

VOC (Directive 2010/75/EC): 6,90 % - 91,77 g/litre

SECTION 10. Stability and reactivity

10.1. Reactivity

There are no particular risks of reaction with other substances in normal conditions of use.

ETHYL ACETATE

Decomposes slowly into acetic acid and ethanol under the effect of light, air and water.

10.2. Chemical stability

The product is stable in normal conditions of use and storage.

10.3. Possibility of hazardous reactions

The vapours may also form explosive mixtures with the air.

ETHYL ACETATE

Risk of explosion on contact with: alkaline metals,hydrides,oleum.May react violently with: fluorine,strong oxidising agents,chlorosulphuric acid,potassium tert-butoxide.Forms explosive mixtures with: air.

10.4. Conditions to avoid

Avoid overheating. Avoid bunching of electrostatic charges. Avoid all sources of ignition.

Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 9 / 14

Replaced revision:6 (Dated 16/06/2016)

SECTION 10. Stability and reactivity .../>>

ETHYL ACETATE

Avoid exposure to: light, sources of heat, naked flames.

10.5. Incompatible materials

ETHYL ACETATE

Incompatible with: acids,bases,strong oxidants,aluminium,nitrates,chlorosulphuric acid.Incompatible materials: plastic materials.

10.6. Hazardous decomposition products

In the event of thermal decomposition or fire, gases and vapours that are potentially dangerous to health may be released.

SECTION 11. Toxicological information

11.1. Information on toxicological effects

Metabolism, toxicokinetics, mechanism of action and other information

Information not available

Information on likely routes of exposure

Information not available

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Information not available

Interactive effects

Information not available

ACUTE TOXICITY

LC50 (Inhalation) of the mixture: > 20 mg/l

LD50 (Oral) of the mixture: Not classified (no significant component)

LD50 (Dermal) of the mixture: >2000 mg/kg

TRIS(NONYLPHENYL)PHOSPHITE

 LD50 (Oral)
 > 15000 mg/kg Rattus sp.

 LD50 (Dermal)
 > 2000 mg/kg Oryctolagus sp.

DIFENILMETANODIISOCIANATO, ISOMERI E OMOLOGHI

 LD50 (Oral)
 > 10000 mg/kg Rattus sp.

 LD50 (Dermal)
 > 9400 mg/kg Oryctolagus sp.

 LC50 (Inhalation)
 1,5 mg/l/4h Rattus sp.

DIFENILMETAN-4,4'-DIISOCIANATO

 LD50 (Oral)
 > 2000 mg/kg Rattus sp.

 LD50 (Dermal)
 > 9400 mg/kg Oryctolagus sp.

 LC50 (Inhalation)
 1,5 mg/l/4h Rattus sp.

BIS(2,2,6,6-TETRAMETHYL-4-PIPERIDYL)SEBACATE

 LD50 (Oral)
 3700 mg/kg Rattus sp.

 LD50 (Dermal)
 > 3170 mg/kg Rattus sp.

 LC50 (Inhalation)
 0,5 mg/l Rattus sp.

REACTIVE MIXTURE OF ETHYLBENZENE, m-XYLENE AND p-XYLENE
LD50 (Oral) 5627 mg/kg Mus sp.
LD50 (Dermal) > 5000 ml/kg Oryctolagus sp.
LC50 (Inhalation) 6700 ppm/4h Rattus sp.

ETHYL ACETATE

LD50 (Oral) 5620 mg/kg Rattus sp.
LD50 (Dermal) > 20000 mg/kg Oryctolagus sp.
LC50 (Inhalation) 1600 mg/kg Oryctolagus sp.

XYLENE (BENZENE < 0.01%)

5627 mg/kg Mus sp.

Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 10 / 14

Replaced revision:6 (Dated 16/06/2016)

SECTION 11. Toxicological information .../>>

LD50 (Oral) LD50 (Dermal) LC50 (Inhalation)

> 5000 mg/kg Oryctolagus sp. 6700 ppm/4h Rattus sp.

SKIN CORROSION / IRRITATION

Does not meet the classification criteria for this hazard class

SERIOUS EYE DAMAGE / IRRITATION

Does not meet the classification criteria for this hazard class

RESPIRATORY OR SKIN SENSITISATION

Sensitising for the respiratory system May produce an allergic reaction. Contains:

GERM CELL MUTAGENICITY

Does not meet the classification criteria for this hazard class

CARCINOGENICITY

Does not meet the classification criteria for this hazard class

REPRODUCTIVE TOXICITY

Does not meet the classification criteria for this hazard class

STOT - SINGLE EXPOSURE

Does not meet the classification criteria for this hazard class

STOT - REPEATED EXPOSURE

Does not meet the classification criteria for this hazard class

ASPIRATION HAZARD

Does not meet the classification criteria for this hazard class

SECTION 12. Ecological information

12.1. Toxicity

TRIS(NONYLPHENYL)PHOSPHITE

LC50 - for Fish 7,1 mg/l/96h Danio rerio

DIFENILMETANODIISOCIANATO, ISOMERI E OMOLOGHI

LC50 - for Fish > 1000 mg/l/96h Danio rerio

EC50 - for Algae / Aquatic Plants > 1640 mg/l/72h Scenedesmus subspicatus

Chronic NOEC for Crustacea > 10 mg/l Daphnia magna

DIFENILMETAN-4,4'-DIISOCIANATO

LC50 - for Fish > 1000 mg/l/96h Danio rerio

EC50 - for Algae / Aquatic Plants > 1640 mg/l/72h Scenedesmus subspicatus

Chronic NOEC for Crustacea > 10 mg/l Daphnia magna

Chronic NOEC for Algae / Aquatic Plants 1640 mg/l Desmodesmus subspicatus

BIS(2,2,6,6-TETRAMETHYL-4-PIPERIDYL)SEBACATE

LC50 - for Fish 4,4 mg/l/96h Brachydanio rerio EC50 - for Crustacea 0,57 mg/l/48h Daphnia sp.

EC50 - for Algae / Aquatic Plants 1,9 mg/l/72h Scenedesmus subspicatus

Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 11 / 14

Replaced revision:6 (Dated 16/06/2016)

SECTION 12. Ecological information .../>>

REACTIVE MIXTURE OF ETHYLBENZENE, m-XYLENE AND p-XYLENE

LC50 - for Fish 2,6 mg/l/96h Salmo gairdneri

EC10 for Algae / Aquatic Plants 1,9 mg/l/72h Selenastrum capricornutum

ETHYL ACETATE

LC50 - for Fish > 212 mg/l/96h

EC50 - for Crustacea 260 mg/l/48h Daphnia pulex

XYLENE (BENZENE < 0.01%)

LC50 - for Fish 2,6 mg/l/96h Oncorhynchus mykiss

EC50 - for Algae / Aquatic Plants 4,36 mg/l/72h Pseudokirchneriella subcapitata

Chronic NOEC for Fish > 1,3 mg/l Oncorhynchus mykiss Chronic NOEC for Crustacea 1,57 mg/l Daphnia magna

12.2. Persistence and degradability

TRIS(NONYLPHENYL)PHOSPHITE

NOT rapidly degradable

DIFENILMETANODIISOCIANATO, ISOMERI E OMOLOGHI

NOT rapidly degradable

BIS(2,2,6,6-TETRAMETHYL-4-PIPERIDYL)SEBACATE

NOT rapidly degradable

ETHYL ACETATE

Solubility in water > 10000 mg/l

Rapidly degradable

XYLENE (BENZENE < 0.01%)

Rapidly degradable

12.3. Bioaccumulative potential

ETHYL ACETATE

Partition coefficient: n-octanol/water 0,68 BCF 30

12.4. Mobility in soil

Information not available

12.5. Results of PBT and vPvB assessment

On the basis of available data, the product does not contain any PBT or vPvB in percentage greater than 0,1%.

12.6. Other adverse effects

Information not available

SECTION 13. Disposal considerations

13.1. Waste treatment methods

Reuse, when possible. Product residues should be considered special hazardous waste. The hazard level of waste containing this product should be evaluated according to applicable regulations.

Disposal must be performed through an authorised waste management firm, in compliance with national and local regulations.

CONTAMINATED PACKAGING

Contaminated packaging must be recovered or disposed of in compliance with national waste management regulations.

SECTION 14. Transport information

The product is not dangerous under current provisions of the Code of International Carriage of Dangerous Goods by Road (ADR) and by Rail (RID), of the International Maritime Dangerous Goods Code (IMDG), and of the International Air Transport Association (IATA) regulations.

Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 12 / 14

Replaced revision:6 (Dated 16/06/2016)

SECTION 14. Transport information ... / >>

14.1. UN number

Not applicable

14.2. UN proper shipping name

Not applicable

14.3. Transport hazard class(es)

Not applicable

14.4. Packing group

Not applicable

14.5. Environmental hazards

Not applicable

14.6. Special precautions for user

Not applicable

14.7. Transport in bulk according to Annex II of Marpol and the IBC Code

Information not relevant

SECTION 15. Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Seveso Category - Directive 2012/18/EC: None

Restrictions relating to the product or contained substances pursuant to Annex XVII to EC Regulation 1907/2006

Product

Point 3

Contained substance

Point 52 DIISONONYL PHTHALATE

Point 56 DIFENILMETANODIISOCIANATO, ISOMERI E OMOLOGHI

Point 56 DIFENILMETAN-4,4'-DIISOCIANATO

Reg. no.: 01-2119457014-47-XXXX

Substances in Candidate List (Art. 59 REACH)

On the basis of available data, the product does not contain any SVHC in percentage greater than 0,1%.

Substances subject to authorisation (Annex XIV REACH)

None

Substances subject to exportation reporting pursuant to (EC) Reg. 649/2012:

None

Substances subject to the Rotterdam Convention:

None

Substances subject to the Stockholm Convention:

None

Healthcare controls

Workers exposed to this chemical agent must not undergo health checks, provided that available risk-assessment data prove that the risks related to the workers' health and safety are modest and that the 98/24/EC directive is respected.

15.2. Chemical safety assessment

No chemical safety assessment has been processed for the mixture and the substances it contains.

Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 13 / 14

Replaced revision:6 (Dated 16/06/2016)

SECTION 16. Other information

Text of hazard (H) indications mentioned in section 2-3 of the sheet:

Flammable liquid, category 2 Flam. Liq. 2 Flam. Liq. 3 Flammable liquid, category 3 Carc. 2 Carcinogenicity, category 2 Acute toxicity, category 4 Acute Tox. 4 Aspiration hazard, category 1 Asp. Tox. 1

Specific target organ toxicity - repeated exposure, category 2 STOT RE 2

Eye Dam. 1 Serious eye damage, category 1 Eye Irrit. 2 Eye irritation, category 2 Skin Irrit 2 Skin irritation, category 2

STOT SE 3 Specific target organ toxicity - single exposure, category 3

Respiratory sensitization, category 1 Resp. Sens. 1 Skin Sens. 1 Skin sensitization, category 1

Aquatic Acute 1 Hazardous to the aquatic environment, acute toxicity, category 1 Hazardous to the aquatic environment, chronic toxicity, category 1 **Aquatic Chronic 1 Aquatic Chronic 2** Hazardous to the aquatic environment, chronic toxicity, category 2

H225 Highly flammable liquid and vapour. H226 Flammable liquid and vapour. Suspected of causing cancer. H351 H312 Harmful in contact with skin.

H332 Harmful if inhaled.

May be fatal if swallowed and enters airways. H304

H373 May cause damage to organs through prolonged or repeated exposure.

H318 Causes serious eye damage. Causes serious eve irritation. H319 H315 Causes skin irritation.

May cause respiratory irritation. H335

May cause allergy or asthma symptoms or breathing difficulties if inhaled. H334

May cause an allergic skin reaction. H317 H336 May cause drowsiness or dizziness.

H400 Very toxic to aquatic life.

Very toxic to aquatic life with long lasting effects. H410 H411 Toxic to aquatic life with long lasting effects.

EUH066 Repeated exposure may cause skin dryness or cracking. **EUH204** Contains isocyanates. May produce an allergic reaction.

Use descriptor system:

Formulation of preparations **ERC**

FRC 5 Industrial use resulting in inclusion into or onto a matrix

ERC Wide dispersive indoor use of reactive substances in open systems

PC 1 Adhesives, sealants PC 21 Laboratory chemicals PROC 10 Roller application or brushing PROC 15 Use as laboratory reagent

PROC 3 Use in closed batch process (synthesis or formulation)

PROC 4 Use in batch and other process (synthesis) where opportunity for exposure arises

PROC 5 Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant

contact)

PROC 8a Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated

Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated

facilities

Transfer of substance or preparation into small containers (dedicated filling line, including weighing) Formulation [mixing] of preparations and/or re-packaging (excluding alloys)

General manufacturing, e.g. machinery, equipment, vehicles, other transport equipment

SU Building and construction work

SU

PROC 8b

PROC 9

10

- ADR: European Agreement concerning the carriage of Dangerous goods by Road
- CAS NUMBER: Chemical Abstract Service Number
- CE50: Effective concentration (required to induce a 50% effect)
- CE NUMBER: Identifier in ESIS (European archive of existing substances)
- CLP: EC Regulation 1272/2008
- DNEL: Derived No Effect Level
- EmS: Emergency Schedule

Polyurethane Sealant

Revision nr.7 Dated 27/09/2018 Printed on 27/09/2018 Page n. 14 / 14

Replaced revision:6 (Dated 16/06/2016)

SECTION 16. Other information .../>>

- GHS: Globally Harmonized System of classification and labeling of chemicals- IATA DGR: International Air Transport Association **Dangerous Goods Regulation**
- IC50: Immobilization Concentration 50%
- IMDG: International Maritime Code for dangerous goods
- IMO: International Maritime Organization
- INDEX NUMBER: Identifier in Annex VI of CLP
- LC50: Lethal Concentration 50%
- LD50: Lethal dose 50%
- OEL: Occupational Exposure Level
- PBT: Persistent bioaccumulative and toxic as REACH Regulation
- PEC: Predicted environmental Concentration
- PEL: Predicted exposure level
- PNEC: Predicted no effect concentration
- REACH: EC Regulation 1907/2006
- RID: Regulation concerning the international transport of dangerous goods by train
- TLV: Threshold Limit Value
- TLV CEILING: Concentration that should not be exceeded during any time of occupational exposure.
- TWA STEL: Short-term exposure limit
- TWA: Time-weighted average exposure limit
- VOC: Volatile organic Compounds
- vPvB: Very Persistent and very Bioaccumulative as for REACH Regulation
- WGK: Water hazard classes (German).

GENERAL BIBLIOGRAPHY

- 1. Regulation (EC) 1907/2006 (REACH) of the European Parliament
- 2. Regulation (EC) 1272/2008 (CLP) of the European Parliament
- 3. Regulation (EU) 790/2009 (I Atp. CLP) of the European Parliament
- 4. Regulation (EU) 2015/830 of the European Parliament
- 5. Regulation (EU) 286/2011 (II Atp. CLP) of the European Parliament
- 6. Regulation (EU) 618/2012 (III Atp. CLP) of the European Parliament
- 7. Regulation (EU) 487/2013 (IV Atp. CLP) of the European Parliament
- 8. Regulation (EU) 944/2013 (V Atp. CLP) of the European Parliament
- 9. Regulation (EU) 605/2014 (VI Atp. CLP) of the European Parliament
- 10. Regulation (EU) 2015/1221 (VII Atp. CLP) of the European Parliament
- 11. Regulation (EU) 2016/918 (VIII Atp. CLP) of the European Parliament
- 12. Regulation (EU) 2016/1179 (IX Atp. CLP)
- 13. Regulation (EU) 2017/776 (X Atp. CLP)
- The Merck Index. 10th Edition
- Handling Chemical Safety
- INRS Fiche Toxicologique (toxicological sheet)
- Patty Industrial Hygiene and Toxicology
- N.I. Sax Dangerous properties of Industrial Materials-7, 1989 Edition
- IFA GESTIS website
- FCHA website
- Database of SDS models for chemicals Ministry of Health and ISS (Istituto Superiore di Sanità) Italy

Note for users:

The information contained in the present sheet are based on our own knowledge on the date of the last version. Users must verify the suitability and thoroughness of provided information according to each specific use of the product.

This document must not be regarded as a guarantee on any specific product property.

The use of this product is not subject to our direct control; therefore, users must, under their own responsibility, comply with the current health and safety laws and regulations. The producer is relieved from any liability arising from improper uses.

Provide appointed staff with adequate training on how to use chemical products.

Changes to previous review:

The following sections were modified:

01 / 02 / 03 / 04 / 07 / 08 / 09 / 10 / 11 / 12 / 14 / 15 / 16.